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Abstract

Here we present information theoretic mea-
sures based on the data diffusion operator as
characterisations of the representations learned
by neural networks. Specifically, we define
diffusion spectral entropy (DSE), i.e., entropy of
the diffusion operator computed on the neural
representation of a dataset as well as diffusion
spectral mutual information (DSMI), which
assesses the relationship between different sets
of variables representing data. First, we show
that these definitions form robust measures
of intrinsic dimensionality and relationship
strength respectively on toy data, outperforming
binned Shannon entropy in terms of accuracy.
Then we study the evolution of representations
within classification networks and networks with
self-supervised losses. In both cases, we see
that generalizable training results in decrease
in DSE over epochs — starting from a random
initialization. We also see that there is an increase
in DSMI with the class label over time. On the
other hand, training with corrupt labels results
in a maintenance or increase in entropy and
near-zero DSMI with labels. We also assess
DSMI with the input and observe differing trends.
On MNIST it grows until plateaus, whereas
on CIFAR it increases and then decreases.
Overall results show that these measures can
elucidate characteristics of network performance
as well as data complexity. Code is available at
https://github.com/ChenLiu-1996/

DiffusionSpectralEntropy.
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1. Introduction

Deep neural networks have emerged as a major break-
through in data science largely because of their ability to
learn increasingly meaningful representations of data. In
fact neural networks function by transforming data via a
series of non-linear operations such that each layer learns
a new representation of the data. While the representations
vectors reside in high dimensional spaces, they in fact lie on
a lower dimensional manifold (Fefferman et al., 2016). As-
sessing the properties of this embedding manifold therefore
is key to better understanding the neural network.

Here, we use a powerful manifold learning paradigm —
diffusion geometry — to study the representations learned
by neural networks. Diffusion geometry involves learning
a data diffusion operator, which is a type of Markovian
transition matrix describing relationships in the data. A
key contribution of this work is in introducing diffusion
spectral entropy (DSE), or spectral entropy of the diffusion
operator as a robust quantifier of the intrinsic information
measure of data representation despite the presence of noise.
Further, we extend diffusion spectral entropy to a diffusion
spectral mutual information (DSMI) in order to ascertain
the information the embedding manifold has on the output
labels or the raw input data of the dataset.

Our key contributions are:

* Establishing diffusion geometry as a tool for studying
neural network representations.

e Introducing diffusion spectral entropy, i.e. Shannon
entropy of the spectrum of the diffusion operator as a
measure of the information content in a representation
of the data.

 Defining diffusion spectral mutual information and
providing a method of its computation for assessing
relationships between different layers of information
in a neural network.

 Utilizing both methods to assess the evolution of repre-
sentations in neural networks over training. In specific
we quantify DSE of neural representations as well as
DSMI between neural representations and output labels
or input data over training on different datasets.


https://arxiv.org/abs/2312.04823
https://github.com/ChenLiu-1996/DiffusionSpectralEntropy
https://github.com/ChenLiu-1996/DiffusionSpectralEntropy
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2. Methods

2.1. Diffusion Geometric Quantifications of Manifold
Characteristics

Here we define and motivate quantities that we use to char-
acterize neural network representations. More information
on the background can be found in supplementary materi-
als A and B. In the supplements, we (1) introduce manifold
learning and diffusion geometry, (2) explain the construc-
tion of diffusion operator from data graphs, and (3) discuss
the definitions of entropy and mutual information.

Diffusion spectral entropy for data While spectral en-
tropy has often been used for measuring entropy on graphs,
it has not been used often to compute the entropy of data.
Here we make a particular choice to compute a data-centric
affinity matrix and then a spectral entropy from that ma-
trix. We utilize the anisotropically normalized diffusion
operator from the diffusion maps formulation (Coifman &
Lafon, 2006) (see Eqn 6). This operator can be written as a
symmetric anisotropic normalization of the Gaussian kernel
G(zi; zj) by its diagonal degree matrix.

We define the symmetric matrix

Ki;j = K(zi; zj) (1)

with K being the anisotropic kernel — an intermediate result
during the diffusion maps computation (see Eqn 5). The
row stochastic matrix

P=D K 2)

P
with Dj.j = i Kij;j is our diffusion matrix/operator.

When we compute the diffusion operator on the dataset
X, we utilize the additional notation Px. We define diffu-
sion spectral entropy, with respect to a particular value of
diffusion time t as follows.

Definition 2.1. We define Diffusion Spectral Entropy
(DSE) as an entropy of the eigenvalues of the diffusion
operator Px computed on a dataset X where X 2 X is a
multidimensional vector X1, X @ .. Xq:

Sp(Px;t) := i:t109( i:t); (3)
il

where .t = ST and T {Q are the eigenvalues of the

diffusion matrix Px.

In the matrix P each data point is encoded based on its
transition probability to every other data point if one takes
a random walk on the data. Thus if a data point is discon-
nected or far away from others then it is likely that a random

walk starting at the data point would remain at the data
point. In this setting eigenvectors of the diffusion opera-
tor are paths through the data that are stable states of the
transition operator. Thus the entropy of the transition opera-
tor can be measured over the eigenbasis diffusion operator.
Since rows of this matrix can also be thought to be repre-
sentations of the data (based on their relationships to other
points), this is also a measure of intrinsic dimensionality
of the dataset. Note that the parameter t that parameterizes
the entropy also gives us the capability of separating noise
from the true entropy of the signal. As the value of t in-
creases, the eigenspectrum shifts towards the low frequency
eigenvectors (which move slowly over the graph) because
the eigenvalues j jj < 1 diminish at a rate inversely pro-
portional to their value when they are raised to a power t.
Indeed raising PTK results in identical eigenvectors and pow-
ered eigenvalues, which achieves a low-pass filtering of the
data values over the created affinity graph (Van Dijk et al.,
2018), which to tune computation of entropy. We note that
a similar measure was used in the supplementary material
of (Moon et al., 2019) to select parameters, but diffusion
spectral entropy was not formally defined or discussed there.

Some properties of Sp are discussed and proved in
supplementary materials C.

Diffusion spectral mutual information We further ex-
tend the diffusion spectral entropy to define mutual informa-
tion for understanding the information that some variables
of a data representation have on others, for example the
information that neurons in a hidden layer have about the
primary output.

Definition 2.2. We define the Diffusion Spectral Mutual
Information (DSMI) as the difference between conditional
and unconditional diffusion spectral entropy

In(X;Y)= ?(D(Px;t)

P(Y =y)So(Pxjy=yit): @
yi2Y

The conditioned transition matrix Pxjy =y, is the transition
matrix computed on the subset of X that has output label
Y . To avoid numeric issues that are involved in compar-
ing spectra of different sizes of matrices, we also compute
Sp(Px; t) using subsamples of X the average size of the
classes of Y . Since uniform subsampling maintains distri-
butions, the sampled entropy would be the same as the total
entropy as shown in our experiments (see supplementary
materials G).

In addition, empirically we show that DSMI can reflect the
relationships between data points and their class labels, and
that these degrade with corruption.
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Figure 1.Data processing to obtain the diffusion matrix of an embedding manifold. Each data point X; (in this case, an image) from
the validation set is embedded by the network F as a vector zZ on a D -dimensional embedding manifold (light yellow canvas). This yields
a point cloud with n points, which can be converted into a graph based on local proximity. We can compute its diffusion matrix which

allows for further analysis.

2.2. Efficiently Computing Aforementioned Quantities

Details can be found in supplementary materials E.

3. Results

In this study, we used the ResNet-50 (He et al., 2016) back-
bone, and assessed the penultimate layer of the network. As
a convolutional network, its penultimate layer is different
from most preceding layers as the representations learned
do not contain explicit spatial dimensions. Specifically,
the representations lie in RP rather than R" W ©. This
property allows us to interpret these vectors as points in a
fixed-dimensional space, whereas for other layers we need
to flatten the representations for analysis, which may raise
concerns on mixing spatial information with channel infor-
mation. Our evaluation framework can be easily adapted to
many other vision backbones.

We trained the vision backbones under three conditions: (1)
supervised learning, (2) contrastive learning (specifically,
SimCLR (Chen et al., 2020)), and (3) purposeful overfitting.
More details can be found in supplementary materials D.

To analyze the embedding manifold, we pass the entire vali-
dation set through the network and collect the embedding
vectors. The key step is to convert this point cloud of n
embedding vectors into a data graph, from which we can
find the corresponding diffusion matrix. DSE and DSMI
can be computed from eigenvalues of this diffusion matrix.
This process is illustrated in Figure 1.

3.1. Toy Test Cases for DSE and DSMI

Results can be found in supplementary materials F.

3.2. Results on Neural Network Training Process

There are several key observations on the diffusion geo-
metric quantities on the embedding manifold during neural
network training. Every figure in this section has an en-
larged version in supplementary materials H.

Figure 2 Diffusion Spectral Entropy Sp(Z) of embedding vec-
tors Z. Colors correspond to the three random seeds. t is empiri-
cally set to 1 for MNIST and 2 for CIFAR10. The same t setting
is used in all subsequent figures.

Figure 3.Diffusion Spectral Mutual Information | 5(Z;Y) be-
tween embedding vectors Z and the label classes Y .

DSE We can observe from Figure 2 that DSE in proper
learning (i.e., supervised or contrastive learning on correct
labels) decreases as the model performs better on the down-
stream classification task. Meanwhile, this trend is com-
pletely absent when the model is forced to memorize ran-
dom nonsense labels. This accords with the intuition that
random initialization has high variance and entropy, while
class labels have much lower entropy, and even organiza-
tions created by contrastive losses have lower "surprise”
than random sampling.

DSMI with output In Figure 3, it can be observed that
DSMI I5(Z;Y ) consistently increases during proper learn-
ing. Under the same learning rate and scheduling, the DSMI
climbs more slowly in contrastive learning compared to su-
pervised learning, and it ends up at a lower terminal value.
This may be attributed to the fact that contrastive learn-
ing lacks the direct supervision from explicit class labels.
However since class labels relate to the data geometry, self-
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supervised learning on the data alone still yields some mu-
tual information with labels. In nonsense memorization,
DSMI quickly converges to zero. This aligns well with the
expectation, since a classifier that essentially performs ran-
dom guessing has zero mutual information with the class
label, whereas a functioning classifier corresponds to a posi-
tive mutual information.

Taken together the DSE and DSMI trends indicate that the
representations coalesce to a less noisy and more stream-
lined form where they mainly contain information about the
the output label during good training. Results on the classic
Shannon version can be found in supplementary materials I.

DSMI with input We additionally show DSMI with the in-
put signal in Figure 4. In nonsense memorization, I (Z; X)
stays close to zero just like Ip(Z;Y ), which ascertains
the random projection tendencies. During proper learning,
the information bottleneck theory would suggest 15 (Z; X)
shall decrease (Tishby & Zaslavsky, 2015) while counter-
arguments have also been provided in (Saxe et al., 2019).
Our results suggest they may both be correct, and the trend
may depend on the nature of the dataset X. 15 (Z; X) keeps
increasing during learning on the MNIST dataset, whereas it
begins to decrease after some point on the CIFAR10 dataset.
This may be verified by future studies on more datasets.

Figure 4 Diffusion Spectral Mutual Information | p(Z; X ) be-
tween embedding vectors Z and the input X . Input X is flat-
tened and spectral-clustered into same number of categories as the
output Y for fair comparison.

Embedding visualization See supplementary materials J
for how the visualized embeddings corroborate with the
DSE trends assessed during training.

4. Conclusion

In conclusion, we introduced diffusion operator-based in-
formation theoretic measures as tools for assessing neural
network representations. Specifically we proposed diffusion
spectral entropy (DSE) for measuring information in embed-
ding manifold. We further defined diffusion spectral mutual
information (DSMI) and provided an efficient method of its
computation, and proved bounds on its values in extreme as
well as idealistic clustered cases. Through extensive simu-
lation on toy datasets, we demonstrated diffusion spectral

entropy is a measure of intrinsic dimension on toy data, and
spectral mutual information is a meaningful measure for
mutual dependence between two variables. We also investi-
gated the neural representation from the penultimate layer of
ResNet-50 under supervised learning, contrastive learning
and overfitting settings. We empirically showed that DSE
during learning follows a general decreasing trend while
such decreasing trend is not observed in overfitting setting.
Further, we showed DSMI between a hidden layer and out-
put increases during training and plateaus at some point
whereas it quickly converges to zero in overfitting settings.
We saw more complex data-dependent trends on DSMI with
primary inputs. On the MNIST dataset DSMI with input in-
creases until plateaus while on CIFAR it has non-monotonic
trends characterized increase and later decrease.

See further discussions in supplementary materials K.
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Supplementary Materials

A. Background

Manifold learning and diffusion geometry A useful assumption in representation learning is that high dimensional data,
which is commonly used in deep learning, originates from an intrinsic low dimensional manifold that is mapped via nonlinear
functions to observable high dimensional measurements. This is commonly kndkeraanifold assumptiofrefferman

et al., 2016). LeM ¢ be a hidderd dimensional manifold that is only observable via a collectiom of d nonlinear
functionsf;:::;f, : M 91 R that enable its immersion in a high dimensional ambient spaégss®) = ff(z) =
(f1(2);::::f0(2)T :z2M 9g R from which data is collected. Conversely, given a datXset fx;;:::;xng R"

of high dlmenS|onaI observations, manifold Iearnlng methods assume data points originate from a sampfiagylL, 2

M 9 of the underlying manifold via; = f(z),i =1;:::;n, and aim to learn a low dimensional intrinsic representation
that approximates the manifold geometry\df.

A paradigm that has emerged as useful in manifold learning in recent years is diffusion geometry (Coifman & Lafon, 2006;
Moon et al., 2019; Van Dijk et al., 2018; Burkhardt et al., 2019; Huguet et al., 2022). Diffusion geometry seeks to describe
data points based on random-walk probabilities to one another. This has been seen to be a noise-tolerant and adaptive way of
representing data whose dimensionality reductions have yielded methods such as PHATE (Moon et al., 2019) and diffusion
maps (Coifman & Lafon, 2006).

Diffusion maps begin with a kerné, often a Gaussian kernekp(k z;  z,k?= ), where > O0is interpreted as a
user-con gurable neighborhood size. Such a kernel transforms distances between data points to similarities or af nities.
However, such neighborhoods encode sampling density information together with local geometric information. To construct
a diffusion geometry that is robust to sampling density variations we may use an anisotropic kernel

G(z1; 22) K2y 2ok
K(z1;25) = 21,22)= e 5
(21, 22) KG(z2; Yk, KG(z; K, G(21;22) (5)
as proposed in (Coifman & Lafon, 2006), whére 1 controls the separation of geometry from density, with O

yielding the classic Gaussian kernel, ang& 1 completely removing density and providing a geometric equivalent to
uniform sampling of the underlying manifold. Next, the similarities encodel lare normalized to de ne transition

probabilitiesp(z1;2;) = (o7 that are organized inam  n row stochastic matrix

Pij = p(zi;z) (6)

that describes a Markovian diffusion process over the intrinsic geometry of the data. Finally, a diffusion map (C0|fman &
Lafon, 2006) is de ned by taking the eigenvalues | 1j | 2j ] N j and correspondlng eigenvectdrs g]

of P, and mapping each data point2 X to anN dimensional vector ¢(xi) =[ % 1(xi);:::; & ~(Xi)]T, wheret
represents a diffusion-time, i.e., number of transitions considered in the diffusion process In gemémahmes most

of the eigenvalues!,j = 1;:::;N, become negligible, and thus truncated diffusion map coordinates can be used for
dimensionality reduction (C0|fman & Lafon, 2006). For example, PHATE involves computing a symmetric divergence
between the rows of the diffusion operator and embedding this with multidimensional scaling.

Entropy and mutual information  Entropy, a basic quantity in information theory, quanti es the amount of uncertainty or
“surprise” when given the value of a random variable. If the variable is distributed with a distribution that has probability
mass that is spread out, such as a uniform distribution, then the entropy is high. On the other extreme, if there is no
uncertainty in the quantity of the variable, i.e., it is deterministic then the entropy is 0. The Shannon entropy is computed as
below.

X
H(X)= E[ logp(X)]= p(x) log p(x) (7
x2X
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The von Neumann entropy (von Neumann, 2018) from quantum information extends the entropy measure to the quantum
mechanics domain, and in particular it operates on density matrices. If a density miadisxa set of eigenvalués; g, the
von Neumann entropy is de ned as

X
H()= t(In)= ilog i (8)

Here von Neumann entropy is considered to be an extension of Gibbs entropy, which is a measure of the spread of a
distribution on the microstates of a classical system. Classical systems can only exist in pure states (or standard basis states).
However, quantum systems can exist in superposition states, and depending on the distribution of superposition states the
stable or ground states can be rede ned as the eigenfunctions of a density operator which describes the probabilities of
superpositions.

This notion has subsequently been extended to graph spectra in several works. These methods generally compute the
entropy of normalized eigenvalue of a graph adjacency matrix and have been used variously in biology and other elds to
compare graphs (Su et al., 2022; de Siqueira Santos et al., 2016; Takahashi et al., 2012; Merbis & de Domenico, 2023;
Villafafie-Delgado & Aviyente, 2016).

Mutual information is de ned as a function of entropy. There are many alternative formulations of mutual information that
are equivalent. The most useful formulation here is as a difference between the (unconditional) entropy of a variable, and
the entropy of a variable when conditioned on the value of another variable.

X
LX5Y) = H(X)  H(XjY)= H(X) p(Y = yi)H(XjY = i) 9)

Here the conditional entropy (X jY) is given as a weighted sum over valuesYofn the discrete case, and thus it is
computed as in the form on the right hand of Eqn 9.

B. Related Works

Prior works attempted to study neural networks during training by visualizing the neural representation (Gigante et al.,
2019) or the loss landscape (Li et al., 2018). These works provided some qualitative ways to analyze neural networks
during training but did not offer quanti cation. The information bottleneck theory for deep learning (Tishby & Zaslavsky,
2015) introduced a framework for quantifying information content in neural networks during training. They binned the
vectors along each feature dimension to form a probability distribution and computed the Shannon entropy and mutual
information. The main limitation of their proposed method is the curse of dimensionality in the binning process that renders
it impractical to analyze layers with more than a dozen neurons — which is ubiquitous in modern deep neural networks
(see supplementary material ). Follow-up work (Saxe et al., 2019) used kernel density estimation (Kolchinsky & Tracey,
2017) and Kraskov estimator (Kraskov et al., 2004) for approximating mutual information, yet both estimation methods
require speci ¢ assumptions on the distributions of hidden layer activation. Our proposed method does not assume speci ¢
distribution on hidden layer activations and also avoids the binning problem since it operates on the eigenspectrum rather
than the set of embedding vectors.

C. Propositions on Diffusion Spectral Entropy and Diffusion Spectral Mutual Information

The propositions below establish some bounds on minimal and maximal values of DSE. In addition, they provide intuition
on the de nition of DSMI. Note that takingg! 1  allows us to talk about the major structures in the dataset.

Proposition C.1. Sp achieves minimal entropy 6fwhen the diffusion operator de nes an ergodic Markov chain, and is in
steady state (as!1 ).

Proof. The eigenvalues of a nite ergodic Markov chain haveFthe fdm | 1j> ] 2 i nj 0, we see that
t=0ast!18 i> 1 Thusthe resultantentropyldog(l)+ . ,0 =0, proving the proposition. O

6
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Note that this also implies that if all data points are very similar, i.e., have equal probability of transitioning to any other
point, then it has minimal entropy. This is because such a distribution is a steady state distribution for the diffusion matrix
shown in Egn 2.

Note that steady state distribution for ergoBigwhich is the case of our Kernel-based de nition) is characterized by having
the same transition probabilities from every starting state. Therefore the rows of the Riasig identical, and there is no
distinguishability between points.

Next we discuss when this entropy will reach its maximal value. This happens effectively when points are all spread very far
apart.

Additionally, we can show that there exist§ & N, such that the diffusion spectral entroBy (P x ;t) decreases for all
t>T , implying that as the data is denoised the entropy decreases.

Proposition C.2. Assuming thaP x has at least one eigenvalug 2 (0; 1), then, there exist & 2 N such that for all
t>T
@

— Px;:t)<O:
@tSD( x;t) <0
P
Proof. We recall that the eigenvalues®Bf can be ordered @s=j o] ] 1] i ni O Therefore ;] oL
By computation we have:
' X t t #
@ @ ol ] ol
—Sp(Px;t) == P—— log P——
et> 0" G R
0 10 1
X ] X X o
= ————=@ | ljllogj jj logj ij]A @og j{j tlogj ij 1A

BT j

The rst term is always positive. The asymptotic behavior of the second term is positive. This can be seen by noting that
taking the limitoft | 1, the only summands that do not converge to zero are whenl. Since these are positive, the

sum in the second term is positive in the limittaf 1, and furthermore, since it is continuous, it remains positive for

suf ciently big t.

Examining the third term we have that for suf ciently largthe tlogj ij term dominates, giving a positive third term,
and has positive derivative.

since all three terms are positive for suf ciently Iarge@@tSD (Px ;t) < 0 completing the proof. O

If instead of using a Gaussian kernel for computatiof pfve use a k-nearest-neighbor or other thresholded kernel we can
make the following statement.

Proposition C.3. Ast ! 1, Sp (Px ;t) on data withk well-separated clusters IsgKk.

Proof. If the data hak well separated clusters th&y has eigenvalues of the forin=j 1j = j ,j = =j K>

J ki) i nj 0. Inother words the multiplicity ol eigenvalues oPyx corresponds to the number of connected
components in the underlying graph, which herk,iall other eigenvalues are strigtly less tHaand greater than or equal
to 0. Thereforeas ! 1  only these eigenvalues remain and the resultant DSE,id=klogk = log k completing the
proof. O

Corollary 1. Sp achieves maximal entropy in a matrix where each point only transitions to itself, and the entropy here will
belog(n)

Proof. In this case the transition matrix corresponds to the iderg,ity matrix, hence, eachroéitpenvalues i4d. Thus
the diffusion spectral entropy is the uniform distributionrostates F(lzn) log(1=n) = log( n), which maximizes the
entropy. O

Proposition C.4. Ast ! 1 on a hidden layeX with k well-separated clusters, and output labels perfectly coinciding
with clusters, we will havép (X ;Y) = log k, i.e., DSMI between hidden layer and output layer being positive.

7
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Proof. Based on proposition 3.3, the entropykofvell-separated clustered data with1 islogk, thusSp (Py;t) =
log(k). However for each labgl Sp (P«;t) =log(1) =0 . Thuslp (X;Y) =log k. O

D. Experimental Details
D.1. Three Training Conditions on Real Data

Supervised Learning We trained ResNet-50 (He et al., 2016) models end-to-end using an AdamW optimizer (Loshchilov

& Hutter, 2017) at an initial learning rate 1e-5 for MNIST or 1e-3 for CIFAR10. Learning rate is modulated by a Cosine
Annealing Scheduler (Loshchilov & Hutter, 2016) with a linear warmup for the rst 10 epochs. Early stopping kicks in if

the validation accuracy no longer increases for 15 epochs. Experiments are repeated over 3 random seeds. At the end of
each epoch, we pass the entire validation set (10,000 images for MNIST or CIFAR10) through the model and collect the
R2048 representation vectors as the outputs of the penultimate layer for further analysis.

Contrastive Learning For the contrastive learning experiments, we followed the SimCLR (Chen et al., 2020) paradigm:

we create two augmentations of the same image and asks the model to embed them closer on the embedding manifold, while
encouraging bigger separation between them and the other images in the same batch. The standard training procedure of
contrastive learning rst trains the backbone, with the classi er (the nal, linear layer) detached, for some epochs and then
either performs a linear probing or ne-tuning. In either case, a linear classi er layer is attached and trained for some more
epochs. The weights of the backbone are frozen in the former case versus learnable in the latter.

Since we need to assess how well the model is learning at each epoch, we instead performs linear probing by the end of each
epoch. Speci cally, we freeze the backbone weights, attach a re-initialized linear classi er layer, and train the classi er for

10 epochs with the training set. Then, we record the end-to-end validation accuracy as well as collect the embedding vectors

on the validation set, similar to the supervised learning case. Finally, we unfreeze the backbone weights for the next epoch

of SImMCLR training.

For fair comparison, the training details are otherwise the same as the supervised learning case, including learning rate and
scheduling.

Purposeful Over tting  In purposeful over tting, we train the model in the same manner as the supervised learning case,
except that the data labels are randomly permuted. In this way, the models are forced to learn nonsense labels. To better
over t, we reduced the extent of data augmentation during training, since data augmentation is proven effective to mitigate
over tting. We also increased the early-stop patience from 15 to 30, with the triggering metric being the train-validation
accuracy divergence instead of validation accuracy.

For fair comparison, the training details are otherwise the same as the supervised learning case, including learning rate and
scheduling.

D.2. Computing DSMI with input

We computd p (Z; X) in the same fashion as we complige(Z;Y). By a simple change of variables, Eqn 4 can be
rewritten as:

Ib(Z;X) = Sp(2) SD()Z(jX)

= Sp(Pz;t) p(X = Xxi)Sp (PzjX = xi;t)
Xi2 X

Compared to DSMI between the neural representation and the output, the DSMI with the input is slightly more complicated
because the input signals do not fall in discrete categoriesxi.arge not naturally de ned. To that end, for the senof

input images, we atten them respectively and perform spectral clustering. For fair comparisdm {thy ), we cluster

these vectors into the same number of categories as the number of clagsé&himremaining process is the same as how

we compute DSMI with the output.






